CS3841 - Design of Operating Systems
Inter-Process Communication

Problem ,
_ Parent Child
* Parent and child process do not 0 0
share address spaces Text Text
Questi Data Data
uestion BSS 5SS
* How can parent and child fork()
] Heap — Heap
communicate?

i l
T T

Stack Stack
o0

Operating Systems

Inter-Process Communication

* Mechanism provided by the operating system from one
process to communicate with another

* How?
— Shared file — Shared memory
— Pipes - classic — Memory-mapped file
e Anonymous — Sockets
* Named e |P
— Message Passing Unix Domain

— Signals

File System

e Memory is NOT shared between parent and child
* Open file descriptors ARE shared
* Shared file

fork()

(@)

create() myfile read()
read() write()
write() g

Operating Systems

File System

Shared named file
— File descriptors are shared
— File position pointers are also shared

* Parent opens file
Parent opens file — file position pointer is at location O

— file position pointer is at location O * Child writes “"HELLO" to file -

Child writes “HELLO” to file — — File position pointers is at location 5
— File position pointers is at location 5 * Parent seeks to beginning of file

Parent reads from the file — File position pointers is at location O

_ Parent gets no data returned Parent reads from the file
— Parent gets “HELLO” %E

File System — Pipes

Provides an anonymous communication mechanism between
parent and child

pipe() system call

Creates 2 file descriptors — one for each end
Kernel maintains position pointers

Named — FIFO (First in First out)

Write End (e Read End

Operating Systems

Message Passing

 Messages are sent to and received from queues
e Can contain arbitrary binary data (int, struct, etc.)

send recv
Parent g« Queue

Operating Systems

Message Passing

* Lots of options on how to send and receive

e Synchronous or asynchronous (blocking or non-blocking)?

— Blocking send — Sending process is blocked until the receiving process reads
message

— Non-blocking send — sending process sends message and continues

— Blocking receive — receiver blocks until a message is available

— Non-blocking receive — receiver retrieves either a valid message or a null
message

 Message queues live beyond the life of the processes that use them

Signals

Table 2.6 Some Linux Signals

SIGHUP | Terminal hangup SIGCONT Continue
SIGQUIT | Keyboard quit SIGTSTP Keyboard stop
SIGTRAP | Trace trap SIGTTOU Terminal write
SIGBUS | Bus error SIGXCPU CPU limit exceeded
SIGKILL | Kill signal SIGVTALRM | Virtual alarm clock
SIGSEGV | Segmentation SIGWINCH | Window size
violation unchanged
SIGPIPT | Broken pipe SIGPWR Power failure
SIGTERM | Termination SIGRTMIN First real-time signal
SIGCHLD | Child status SIGRTMAX | Last real-time signal
unchanged

Operating Systems

Shared Memory

* Memory is NOT shared between parent and child by default
* Shared Memory — special memory map between parent and

child

Parent

Text

Data

BSS

Heap
Shared

Shared

Operating Systems

Child

Text

Data
BSS

Heap
Shared

Shared Memory

* Pros

— Can share variables between parent and child - treat like global data

e Cons

— Takes up address space from other variables
* How much shared memory should we allocate?

— Synchronization

* What happens if multiple processes try to write to the same variable at the
same time?

