
• Objectives

– Construct source code which performs a system call.

– Explain the concept of a trap.

– List some examples of System calls.

– Draw a diagram showing the structure of a Modern *NIX System

– Explain the concept of a loadable module in Linux

– Draw a picture showing the relationship between Linux kernel 
components.

Operating Systems 1



Operating System vs Kernel

• Operating System
– A piece of software that provides services to applications

• Kernel
– A piece of software that “bridges” hardware and software

– Figurative sense of "core or central part of anything“ (https://www.etymonline.com/word/kernel)

• Questions
– Is a kernel an operating system?

– Is there more to an operating system than just the kernel?

– Can an operating system have more than one kernel?

– Does the kernel run on its own?

– How do we create a kernel?

Operating Systems 2



Dual Mode Operation

• Modern Operating Systems use at least two modes of 
operation

– User mode

• A restricted mode of operation which only allows certain instructions to be 
executed by the program

• Prevents errant processes from crashing the system

– Kernel Mode

• Also referred to as supervisor mode, system mode, or privileged mode

• Allows the system full access to the microprocessor

• Intended to be used only by the operating system

Operating Systems 3



Traditional *NIX – Monolithic Kernel

Operating Systems 4

Operating Systems: Internals and Design Principles, 9th Edition

William Stallings

• Few components
– User programs

– Kernel

– Hardware

• Advantages
– Single point of control – All services in single 

address space

• Disadvantages
– Single point of failure

– Updates require reload of system



Microkernel Structure

Operating Systems 6



Microkernels

• Remove all but “essential components” from the kernel

• Bulk of responsibilities is in user space

• Communication through message passing

• Advantages

– Smaller kernel

– More robust - User space components can be updates/restarted easily

• Disadvantages

– Message passing overhead

– Additional system calls needed

Operating Systems 7



Linux Kernel

Operating Systems 10

Operating Systems: Internals and Design Principles, 9th Edition William Stallings



Android

Operating Systems 11



Getting help in Linux

• man

– Manual pages

• apropos

– Man page search

Operating Systems 12



System Calls

• System Calls provide a set of “functions” for applications to use 
operating system services

– OS specific

– Portable Operating System Interface (POSIX)

• C or C++ library interface

• Typically involve some “trap” to the operating system

Operating Systems 13



System Calls

Operating Systems 14

• Trap, System Call, Supervisor Call: user mode -> kernel mode

– Transfers control from user program to kernel function

– Sets mode from user to kernel



Why do we need system calls?

• Isolation and protection

• Kernel is running in privileged mode

– User process is not

• Can processes share anything?

– We will see this later as a method of inter-process communication

• Can processes share information with the kernel? 

• In addition to sharing information, we also want kernel to take 
actions, perhaps immediately

Operating Systems 15



file descriptor

System Calls Example - File Input/Output

Operating Systems 16

– What’s a file? Abstract representation of data on “disk”

– How do we access a file? open, read/write, close

Lab1

open

read

write

close
file descriptor



System Call Table

• System calls are invoked by number

• Kernel finds code to process the system call by indexing in a table

• Linux system call table:

– 32 bit - https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

– 64 bit - https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86_64-64_bit

• Windows system call table:

– 32 bit - https://j00ru.vexillium.org/syscalls/nt/32/

– 64 bit - https://j00ru.vexillium.org/syscalls/nt/64/

Operating Systems 17

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86_64-64_bit
https://j00ru.vexillium.org/syscalls/nt/32/
https://j00ru.vexillium.org/syscalls/nt/64/


System Calls Example - Hello World

Operating Systems 18

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux



How do we invoke a system call?

• Can a system call be a 
function call?

• Software interrupt vs 
SYSENTER vs SYSCALL

• Most system calls are 
wrapped with user-callable 
functions available via the 
standard library

– Linux - libc / glibc

– Windows – NativeAPI (ntdll.dll)

Operating Systems 19



Linux System Calls

Operating Systems 20



System Calls - Questions

• How do we pass data to a system call?

• How many system calls do we need?

• What should the system calls do?

• What process executes a system call?

Operating Systems 21


