
• Objectives
– Explain the contents of the text section, data section, heap, and stack of a program

– Draw a graphical representation of a process in memory

– Explain the concept of process state

– Draw a state transition diagram for process states

– List the contents of a process control block

– Explain what the process scheduler is responsible for doing within the operating system.

– Be able to obtain information about the processes which are running under Linux.

– Explain the relationship between process ids, groups, and the general process hierarchy in Unix

Operating Systems 1



Dual Mode Operation

• Modern Operating Systems use at least two modes of 
operation

– User mode

• A restricted mode of operation which only allows certain instructions to be 
executed by the program

• Prevents errant processes from crashing the system

– Kernel Mode

• Also referred to as supervisor mode, system mode, or privileged mode

• Allows the system full access to the microprocessor

• Intended to be used only by the operating system

Operating Systems 2



Linux Kernel

Operating Systems 3

Operating Systems: Internals and Design Principles, 9th Edition William Stallings



Program vs Process

• Program

– Static representation of operations 
and data

– Compiled code

• Process

– Instance of active exeuction

Operating Systems 4



Why do we need processes?

• Concurrent Processing

• Real concurrency achieved by hardware

– I/O devices operate at same time as processor

– Multiple processors/cores each operate at the same time

• Apparent concurrency achieved with multitasking (multiprogramming)

– Multiple programs appear to operate simultaneously

– Operating system provides the illusion

• Isolation and Protection

– Can’t let one process affect another without permission

Operating Systems 5



Program Structure

• A program has multiple pieces – Here are some examples

– Text 
• The instructions to execute

– Data sections
• Static data (numbers, strings, etc.)

– Linking information
• What software libraries does this program use? (math library, crypto library, etc.)

– Symbol Table
• Information about the symbols (variable names) this program uses

Operating Systems 6



Process Structure

• A process has multiple pieces

– Text section
• The executable code that is running

– Data section
• The global variables of the program

• BSS (Block Started by Symbol) – Uninitialized global variables

– Heap
• Dynamically allocated memory when a process executes (i.e. new)

– Stack
• Temporary data for the process

– Function parameters, return addresses, local variables, etc.

Operating Systems 7



Program vs Process

Operating Systems 8

Process
Program – ELF

Executable 
and Linkable 

Format



Stack

Operating Systems 9

int foo2(int k) {

int i = 5

return i + k;

}

int foo1(int k) {

int i = 5;

int j = k + i + foo2(k);

return j;

}

int main() {

int i = foo1(20);

int j = i + 10;

return j;

}

i and j
Return address - ??

Parameter k
i and j

Return address - main

Parameter k
i

Return address – foo1

foo2

foo1

main



Processes

• OS abstraction

• Created by OS system call

• Managed entirely by OS; unknown to hardware

• Operates “concurrently” with other processes

• Processes have “state”

Operating Systems 10



Process State

• Two state model

– Running and Ready

• Is this all we need?

• What about I/O?

• How do we decide state transitions?

• Round robin scheduling:

– Each process in the queue is given a certain amount of time to execute and then 
returned to the queue, unless it completes

– Period is known as a quantum

• Efficiency - Can we do better?

Operating Systems 11

Ready RunningStart Exit



Process State – 5 State Model

• New
– The process has just been created but has not yet executed

• Ready
– The process is waiting to be assigned to a CPU

• Waiting (Blocked)
– The process is waiting for some event to occur

• Running
– The process is executing on the CPU

• Terminated (Exit)
– The process has finished execution

Operating Systems 12



Process State – 5 State Model

Operating Systems 13

• Is this all we need?

• Efficiency - Can we do better?



Process State – Linux Model

Operating Systems 17



Process – More things to think about

• How many processes do we want to allow?

• What if we run out of memory?

• What about process priority?

• How do we handle run-away processes?

• How do we schedule processes? Fairness?

Operating Systems 18



Process Scheduler

• Objective of multiprogramming

– The CPU must always be doing something

• Process scheduler

– Enforces scheduling policy

– Selects an available process which is ready and determines that it will be the next 
process to execute

– Send the process to the dispatcher

• Process dispatchers

– Responsible for causing the CPU to start executing the desired process

Operating Systems 19



Process Control Block (PCB)

• What does the OS need to keep 
track of?

– Process state

– Process identifier

– Owning user

– Contents of registers

– Program counter

– Memory references

– Others?

Operating Systems 20



Process Table

• How do we track multiple processes?

• OS keeps a table of all PCBs for all processes

– Indexed by process identifier

Operating Systems 21



Process Hierarchy

Operating Systems 22

init

System 
logger

shell shell

chrome lsgvim



Creating a Process
• fork()

– System call that “splits” a processes into two

– New process begins executing at the return from fork

– Parent keeps executing after calling fork

– Programmer can tell the difference based on fork return value

• Return value in parent process – child process process identifier (pid)

• Return value in the child process – 0

– Questions:

• How can the child figure out its pid?

• How can the child process figure out the parent’s pid?

• Is there a use to having multiple processes in a single program?

Operating Systems 23



About fork
• “man fork” for all the details

• Parent and child processes

– Execute the same source code

– Do NOT share memory locations

– Do share file descriptors

• Can we communicate easily between parent and child?

– File system: named files, FIFOs, pipes

– Shared memory

• Is there a better way? Threads

Operating Systems 24


