
Situation:

• There are lots of resources on the system that we’d like to share access:
– Memory

– CPU

– I/O Devices

– Files

• The operating system provides several mechanisms mutually exclusive access to 
these resources
– Semaphores

– Mutexes

– Condition Variables

Operating Systems 1



Deadlock

• Problem
– What if a process tries to get exclusive access to a resource held by another process and vice 

versa?

• Deadlock exists among a set of processes if every process is waiting for an event that 
can be caused only by another process in the set

Operating Systems 2

void* thread1(void*) {

pthread_mutex_lock(&lock1);

// Do work, wait

pthread_mutex_lock(&lock2);

// Do work, wait

pthread_mutex_unlock(&lock2);

pthread_mutex_unlock(&lock1);

return NULL;

}

void* thread2(void*) {

pthread_mutex_lock(&lock2);

// Do work, wait

pthread_mutex_lock(&lock1);

// Do work, wait

pthread_mutex_unlock(&lock1);

pthread_mutex_unlock(&lock2);

return NULL;

}



Conditions for Deadlock

All the following must happen for deadlock to occur:

• Mutual exclusion
– Only one process may use a resource at a time

– No process may access a resource unit that has been allocated to another process

• Hold and wait
– A process may hold allocated resources while awaiting assignment of other resources

• No preemption
– No resource can be forcibly removed from a process holding it

• Circular wait
– A closed chain of processes exists, such that each process holds at least one resource needed by 

the next process in the chain

Operating Systems 3



Deadlock Detection

• Resource Allocation Graph
– Processes (P) and Resources (R)

– An arrow pointing from P to R indicates a request for the resource

– An arrow pointing from R to P indicates the resources is held

– Create a graphs for all resources held and requested by all processes

– Deadlock may exist if there is a cycle

Operating Systems 4

P1 R1

P1 R1

Requests

Held By



Resource Allocation Graphs

Deadlock? No

Operating Systems 5

P1 R1

Requests
P2

Requests

Deadlock? NoP1 R1

Requests
P2

Held By

P1

R1

P2

R2

Deadlock? Yes

P1 is requests R1 which is held by P2

which requests R2 which is held by P1



Resource Allocation Graphs

• What if you have more than one instance of a resource? 

• Does a cycle detect deadlock in that case?

• Consider a semaphore where the value > 1

• There are two instances of R1

– R1 is requested by P1

– One instance is held by P2

– There is a cycle but no deadlock

Operating Systems 6

P1

R1

* *

P2

R2



Deadlock Avoidance

• Conditions for deadlock

– Mutual exclusion

– Hold and wait

– No preemption

– Circular wait

• Eliminate any of the conditions and deadlock can’t happen

Operating Systems 7



Deadlock Avoidance

• Don’t let a process request a resource 
if it could cause deadlock

• System state safety

– Safe state – deadlock is not possible

– Unsafe state – deadlock is possible 
(although might not be happening)

• Goal of deadlock avoidance - Never let 
the system get into an unsafe state

Operating Systems 8

Safe State

Unsafe State

Deadlock 
State



Banker’s Algorithm

• Edsger Dijkstra – circa 1977

• Based on bank lenders – Don’t loan money to someone if it would cause you to 
eventually deplete all your lending resources

• Main Idea
– Processes will request and release resources throughout their lifetime

– Assumes there is a maximum amount of resources that a process will ever request

– Never allow the system to get into a situation where resources are depleted even if ALL 
processes request their max

Operating Systems 9



Banker’s Algorithm

Safe state algorithm
• For each process keep track of a flag indicating if they finished

• For each process check to see if they will finish if their max resources are requested

• If a process finishes add their allocations back what’s available and mark the finished flag

• Keep iterating until there are no changes to the finished flags

• State is safe if all finished flags are true

Operating Systems 10



• A system has the following instances of resources -> 10 of A, 5 of B, and 7 of C

• The following shows the current allocations and max possible requests for 5 processes:

Allocated

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

Banker’s Algorithm - Example

Operating Systems 11

Max

• Is the state of the system safe?

A B C

10 5 7

Total



• A system has the following instances of resources -> 10 of A, 5 of B, and 2 of C

Allocated

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Banker’s Algorithm - Example

Operating Systems 12

A B C

3 3 2

Max Potential Need Remaining

• Is the state of the system safe?



Banker’s Algorithm - Example

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

Operating Systems 13

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

A B C

3 3 2

Allocated Max Potential Need Remaining

• Process P0 requests 1 instance of A and 2 instances of C

• Should the request be allowed?

• Check – attempt the allocation and check if the resulting state is safe



Banker’s Algorithm - Disadvantages

• Not always possible to know the max resources a process will request

• Assumes processes will eventually release held resources

• Assumes a static number of processes

Operating Systems 14



Deadlock Recovery

• What do you do when you have deadlock?

• Three main approaches

– Terminate the processes
• Terminate all

• Terminate one by one - priority based termination

• Problem: how to do you pick a process (or set of processes) to terminate

– Preempt the resources
• Rollback execution to a safe state

• Problems
– How do you find a safe state?

– Starvation - how do you ensure progress?

– Do nothing

Operating Systems 15


