
Situation:

• There are lots of resources on the system that we’d like to share access:
– Memory

– CPU

– I/O Devices

– Files

• The operating system provides several mechanisms mutually exclusive access to 
these resources
– Semaphores

– Mutexes

– Condition Variables
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Deadlock

• Problem
– What if a process tries to get exclusive access to a resource held by another process and vice 

versa?

• Deadlock exists among a set of processes if every process is waiting for an event that 
can be caused only by another process in the set
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void* thread1(void*) {

pthread_mutex_lock(&lock1);

// Do work, wait

pthread_mutex_lock(&lock2);

// Do work, wait

pthread_mutex_unlock(&lock2);

pthread_mutex_unlock(&lock1);

return NULL;

}

void* thread2(void*) {

pthread_mutex_lock(&lock2);

// Do work, wait

pthread_mutex_lock(&lock1);

// Do work, wait

pthread_mutex_unlock(&lock1);

pthread_mutex_unlock(&lock2);

return NULL;

}



Conditions for Deadlock

All the following must happen for deadlock to occur:

• Mutual exclusion
– Only one process may use a resource at a time

– No process may access a resource unit that has been allocated to another process

• Hold and wait
– A process may hold allocated resources while awaiting assignment of other resources

• No preemption
– No resource can be forcibly removed from a process holding it

• Circular wait
– A closed chain of processes exists, such that each process holds at least one resource needed by 

the next process in the chain
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Deadlock Detection

• Resource Allocation Graph
– Processes (P) and Resources (R)

– An arrow pointing from P to R indicates a request for the resource

– An arrow pointing from R to P indicates the resources is held

– Create a graphs for all resources held and requested by all processes

– Deadlock may exist if there is a cycle
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Resource Allocation Graphs

Deadlock? No
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Resource Allocation Graphs

• What if you have more than one instance of a resource? 

• Does a cycle detect deadlock in that case?

• Consider a semaphore where the value > 1

• There are two instances of R1

– R1 is requested by P1

– One instance is held by P2

– There is a cycle but no deadlock
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Deadlock Avoidance

• Conditions for deadlock

– Mutual exclusion

– Hold and wait

– No preemption

– Circular wait

• Eliminate any of the conditions and deadlock can’t happen
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Deadlock Avoidance

• Don’t let a process request a resource 
if it could cause deadlock

• System state safety

– Safe state – deadlock is not possible

– Unsafe state – deadlock is possible 
(although might not be happening)

• Goal of deadlock avoidance - Never let 
the system get into an unsafe state
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Banker’s Algorithm

• Edsger Dijkstra – circa 1977

• Based on bank lenders – Don’t loan money to someone if it would cause you to 
eventually deplete all your lending resources

• Main Idea
– Processes will request and release resources throughout their lifetime

– Assumes there is a maximum amount of resources that a process will ever request

– Never allow the system to get into a situation where resources are depleted even if ALL 
processes request their max
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Banker’s Algorithm

Safe state algorithm
• For each process keep track of a flag indicating if they finished

• For each process check to see if they will finish if their max resources are requested

• If a process finishes add their allocations back what’s available and mark the finished flag

• Keep iterating until there are no changes to the finished flags

• State is safe if all finished flags are true
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• A system has the following instances of resources -> 10 of A, 5 of B, and 7 of C

• The following shows the current allocations and max possible requests for 5 processes:

Allocated

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

Banker’s Algorithm - Example
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Max

• Is the state of the system safe?

A B C

10 5 7

Total



• A system has the following instances of resources -> 10 of A, 5 of B, and 2 of C

Allocated

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Banker’s Algorithm - Example
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A B C

3 3 2

Max Potential Need Remaining

• Is the state of the system safe?



Banker’s Algorithm - Example

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2
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A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

A B C

3 3 2

Allocated Max Potential Need Remaining

• Process P0 requests 1 instance of A and 2 instances of C

• Should the request be allowed?

• Check – attempt the allocation and check if the resulting state is safe



Banker’s Algorithm - Disadvantages

• Not always possible to know the max resources a process will request

• Assumes processes will eventually release held resources

• Assumes a static number of processes
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Deadlock Recovery

• What do you do when you have deadlock?

• Three main approaches

– Terminate the processes
• Terminate all

• Terminate one by one - priority based termination

• Problem: how to do you pick a process (or set of processes) to terminate

– Preempt the resources
• Rollback execution to a safe state

• Problems
– How do you find a safe state?

– Starvation - how do you ensure progress?

– Do nothing
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