CS3841 - Deadlock

Situation:
* There are lots of resources on the system that we’d like to share access:

— Memory
— CPU
— 1/O Devices
— Files
* The operating system provides several mechanisms mutually exclusive access to
these resources
— Semaphores
— Mutexes

— Condition Variables

Operating Systems




Deadlock

Problem
— What if a process tries to get exclusive access to a resource held by another process and vice
versa?
vold* threadl (void*) { volid* thread2 (void*) {
pthread mutex lock(&lockl); pthread mutex lock(&lock2);
// Do work, wait // Do work, wait
pthread mutex lock(&lock2); pthread mutex lock(&lockl);
// Do work, wait // Do work, wait
pthread mutex unlock(&lock2); pthread mutex unlock(&lockl);
pthread mutex unlock(&lockl); pthread mutex unlock(&lock2);
return NULL; return NULL;

} }

Deadlock exists among a set of processes if every process is waiting for an event that
can be caused only by another process in the set

Operating Systems 2



Conditions for Deadlock

All the following must happen for deadlock to occur:
* Mutual exclusion

— Only one process may use a resource at a time
— No process may access a resource unit that has been allocated to another process

Hold and wait
— A process may hold allocated resources while awaiting assignment of other resources
* No preemption
— No resource can be forcibly removed from a process holding it
e Circular wait

— A closed chain of processes exists, such that each process holds at least one resource needed by
the next process in the chain




Deadlock Detection

e Resource Allocation Graph

— Processes (P) and Resources (R)
— An arrow pointing from P to R indicates a request for the resource @ Requests > R1

— An arrow pointing from R to P indicates the resources is held Held By
R
1

— Create a graphs for all resources held and requested by all processes

— Deadlock may exist if there is a cycle

Operating Systems



Resource Allocation Graphs

Requests Requests

@ i » R, - @ Deadlock? No
Requests Held By

@ 2 » R, Deadlock? No

Deadlock? Yes

P, is requests R, which is held by P,
which requests R, which is held by P,

;

Operating Systems 5




Resource Allocation Graphs

What if you have more than one instance of a resource?
Does a cycle detect deadlock in that case?
Consider a semaphore where the value > 1

There are two instances of R,
— R, is requested by P,
— One instance is held by P,

— There is a cycle but no deadlock

Operating Systems



Deadlock Avoidance

e Conditions for deadlock
— Mutual exclusion
— Hold and wait
— No preemption
— Circular wait

* Eliminate any of the conditions and deadlock can’t happen

Operating Systems



Deadlock Avoidance

Don’t let a process request a resource
if it could cause deadlock

System state safety
— Safe state — deadlock is not possible

— Unsafe state — deadlock is possible
(although might not be happening)

Goal of deadlock avoidance - Never let
the system get into an unsafe state

Operating Systems

Safe State

Deadlock
State

Unsafe State

8



Banker’s Algorithm

Edsger Dijkstra — circa 1977

Based on bank lenders — Don’t loan money to someone if it would cause you to
eventually deplete all your lending resources

Main Idea

— Processes will request and release resources throughout their lifetime
— Assumes there is a maximum amount of resources that a process will ever request

— Never allow the system to get into a situation where resources are depleted even if ALL
processes request their max




Banker’s Algorithm

Safe state algorithm

* For each process keep track of a flag indicating if they finished

* For each process check to see if they will finish if their max resources are requested

* |f a process finishes add their allocations back what’s available and mark the finished flag
* Keep iterating until there are no changes to the finished flags

* State is safe if all finished flags are true

Operating Systems



Banker’s Algorithm - Example

* A system has the following instances of resources -> 10 of A, 5 of B, and 7 of C
* The following shows the current allocations and max possible requests for 5 processes:

Allocated Max Total
EDOE ENOE Do
P, 0 1 O P, 7 5 3 10 5 7
P, 2 0 O P, 3 2 2
P, 3 0 2 P, 9 0 2
P, 2 1 1 P, 2 2 2
P, 0 0 2 P, 4 3 3

4 4

* |s the state of the system safe?

Operating Systems



Banker’s Algorithm - Example

* A system has the following instances of resources -> 10 of A, 5 of B, and 2 of C

Allocated Max Potential Need Remaining
EOOG EODG EODE Do0
P, 0 1 0 P, 7 5 3 P, 7 4 3 3 3 2
P, 2 0 0 P, 3 2 2 P, 1 2 2
P, 3 0 2 P, 9 0 2 P, 6 0 0
P, 2 1 1 P, 2 2 2 P, 0 1 1
P, 0 0 2 P, 4 3 3 P, 4 3 1

4 4 4

* |s the state of the system safe?

Operating Systems



Banker’s Algorithm - Example

Allocated Max Potential Need Remaining

HODEDE ENOIE ENDe
P, 0 1 O P, 7 5 3 P, 7 4 3

AlBlC

3 3 2
P, 2 0 O P, 3 2 2 P, 1 2 2
P, 3 0 2 P, 9 0 2 P, 6 0 O
P, 2 1 1 P, 2 2 2 P, 0 1 1
P, O 0 2 P, 4 3 3 P, 4 3 1

4 4

D

* Process P, requests 1 instance of A and 2 instances of C
e Should the request be allowed?
* Check — attempt the allocation and check if the resulting state is safe

Operating Systems



Banker’s Algorithm - Disadvantages

* Not always possible to know the max resources a process will request
* Assumes processes will eventually release held resources
* Assumes a static number of processes

Operating Systems



Deadlock Recovery

 What do you do when you have deadlock?

 Three main approaches
— Terminate the processes

* Terminate all
 Terminate one by one - priority based termination
* Problem: how to do you pick a process (or set of processes) to terminate

— Preempt the resources
* Rollback execution to a safe state

* Problems
— How do you find a safe state?
— Starvation - how do you ensure progress?

— Do nothing

Operating Systems



