
Memory Management

● Relocation

● Protection

● Sharing

● Logical Organization

● Physical Organization

○ Main

○ Secondary

Text

Data

Heap

Stack

Process Address Space
0

∞

BSS

Memory

CPU Memory

Logically - An array of bytes accessed by address

load 3

5

12

0

1

2

3

12

store 5 at 1

Program vs Process

Text

Data

Heap

Stack

Process Address Space
0

∞

BSS

Program

Operating System

Memory Allocation

● When processes start memory needs to be allocated
○ Process Control Block

○ Text

○ Data

● Processes want to dynamically allocate and free memory
○ Stack

○ Heap

● Memory is finite - not all processes will fit in memory at the same time

Memory Allocation - Fixed Partitions

● Every process gets the same size

memory partition

● Problems:
○ Internal fragmentation

○ Some processes need more memory than

others

Memory Allocation - Dynamic Partitions

● Processes get memory partition that is

the exact size for what they need

● Where do we put the process allocation?
○ First Fit

○ Next Fit

○ Best Fit

○ Worst Fit

● Problems:
○ External fragmentation

○ May not know how much a memory a process

will need when it starts

Program vs Process

Program 1

Operating System

Program 2
Text

Data

Heap

Stack

Process 2

Address Space
0

∞

BSS

Text

Data

Heap

Stack

Process 1

Address Space
0

∞

BSS

Problem:

● Memory is finite

● Both processes want to see

an unlimited address space

● Processes don’t want to know

about the existence of other

processes

Solution:

Paging

Paging - A Perfect World

Remember Memory

0

1

2

3

Result

0

1

2

3

Access

Paging - The World is Not Perfect

Remember Memory

0

1

2

3

Result

0

1

2

3

Access

?

Paging

Remember Memory

0

1

2

3

Result

0

1

2

3

NOTE

Paging

0

1

2

3

NOTE

Access

Paging

0

1

2

3

NOTE

Access

?

Paging - Swapping

0

1

2

3

NOTE

Access

Paging - Swapping

0

1

2

3

NOTE

Access

Paging - Swapping

0

1

2

3

NOTE

Access

Paging - Swapping

0

1

2

3

NOTE

Access

● The process expects data to always be in the same place

● What happens when there are multiple processes?

● Memory management should not have to be done by the process

Process Managed Paging - Problem

Consider:

void foo() {

int i = 0;

int green = 0;

for(i = 0; i < 10; i++) {

printf(“%p\n”), &green);

}

}

Expected Result:

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

0x7ffe4fcbe6d0

Operating System Managed Paging

Requirement - Allow programs to access the same location (virtual address - VA)

for data even when the data is moved around in memory (physical address - PA)

● Divide program memory into a series of equal sized pieces - pages

● Divide physical memory into pieces (same size as pages) - frames

● Copy pages from disk to memory as they are needed

● Copy pages from memory to disk when there are no free frames

● Record which frame the page is located or that it isn’t in memory

● When a program accesses data at a virtual address, translate the access to

the correct physical address.

Address Translation

...
...

Physical Memory Virtual Memory

offset

offset

Fact:

• Page Size == Frame Size

• Page Offset == Frame Offset

Computation:

• Offset = Virtual Address % Page Size

• Physical Address = k * Page Size + Offset

0

k

n-1

0

1

Page

Number
Frame

Number

Address Translation - Page Table

6

9

...

0

1

2

3

4

5

m-1

● The ‘notebook’ for storing where

(which frame) pages are located

● Indexed by page number

● Stores frame number

Fact:

• Page Size == Frame Size

• Page Offset == Frame Offset

Computation:

• Page Number = Virtual Address / Page Size

• Offset = Virtual Address % Page Size

• Frame Number = Page Table[Page Number]

• Physical Address =

Frame Number * Page Size + Offset

Address Translation

● Math is hard - Hardware is easy

● Ensure page size is a power of 2 - address translation becomes routing bits

Page Size = 4096 = 212

Address Size = 32 bits

Max Addresses = 232

Page Number offset

0111231

Page Table

V

A

Frame Number offset

0111231

P

A

Paging - Address Translation Hardware

● Memory Management Unit (MMU)

Translates virtual addresses to physical address

● Problem:
○ MMU needs page table to translate VA to PA

○ Page table is located in memory

○ MMU requires additional memory access to get page table entry

● Solution: Translation Lookaside Buffer (TLB)

Cache within the MMU that stores page table entries

What’s in a Page Table Entry?

● Page table entry size = Address size

● Present/Valid - Is the page in memory? Yes/No (1 bit)

● Protection
○ Are the contents of the page readable? Yes/No (1 bit)

○ Are the contents of the page writable? Yes/No (1 bit)

● Accessed - Was the page access recently? Yes/No (1 bit)

● Dirty - Has the page been modified since it’s been in memory? Yes/No (1 bit)

Page/Frame Number offset

0111231

Address Structure:

Page Fault / Page Replacement

● Triggered by MMU when requested page is not in a frame

● MMU sends page fault interrupt

● Operating system services interrupt
○ Determines frame for page

■ Free frame if available

■ Chose a victim page to send to disk

○ Populates the frame with new page

○ Updates the page table

○ What happens if present bit in page table is not set AND page does not exist?

Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault

Page Replacement

Virtual Memory Advantages

● Isolation -

Allows multiple processes memory without interfering with each other

● Abstraction -

Allows a process to use all the memory they ‘want’

● Efficiency -
○ Locality - A process typically only uses a subset of pages (working set)

○ Sharing - Read only page (e.g. code) can be shared between multiple processes

Copy on Write and Page Pools

● Copy-on-Write (COW) allows both parent and child processes to initially

share the same pages in memory

○ If either process modifies a shared page, only then is the page copied

● COW allows more efficient process creation as only modified pages are

copied

● In general, free pages are allocated from a pool of zero-fill-on-demand pages

○ Why zero-out a page before allocating it?

Virtual Memory Dilemmas

● What happens when a process is context switched?

● How is a victim page chosen?

● What happens when a process working set is large? Thrashing

● What happens when the page table gets big
○ 32 bit address space and 4096 byte pages/frames => 220 (1048576) page table entries

4 bytes per entry => 4 MiB for page table

○ 64 bit address space and 4096 byte pages/frames => 252 page table entries

4 bytes per entry => 16 TiB for page table

Context Switching

CPU MMU Memory
Virtual Address Physical Address

Data

● OS needs to context switch process P1 for process P2

● TLB contains page table entry cache for P1

● Process P2 has its own page table

● OS needs to clear the TLB and ensure that P2’s page

table is used for all future accesses

● Result: Context switching is costly

Page Table P1

TLB

Page Table P2

Frame Allocation and Page Replacement

● Frame Allocation - How many frames to give each process?

● Page Replacement algorithm
○ First in / First Out (FIFO)

○ Least Recently Used

○ Optimal

● Want lowest page-fault rate on both first access and re-access

First in / First Out

● The first page brought into memory is the first victim page

● Fast to choose a victim
○ Treat frames like a linked list and keep track of the head pointer

● Example: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

● 15 page faults

Least Recently Used

● The victim page is the ‘oldest’ page

● Idea take advantage of temporal and spatial locality
○ Temporal – If a process accesses a page, it’s going to access it again soon

○ Spatial - If a process accesses a page, it’s going to access a location close to it soon

● Requires lots of bookkeeping to keep track of access time

● Example:

● 12 page faults

Optimal – Least Needed in the Future

● The victim page is the page that will not be used for longest period

● Idea take advantage of temporal and spatial locality
○ Temporal – If a process accesses a page, it’s going to access it again soon

○ Spatial - If a process accesses a page, it’s going to access a location close to it soon

● Not possible – Can’t predict the future

● Example:

● 9 page faults

Virtual Memory Tradeoffs

● Increasing page size decreases size of the page table, increasing

performance
○ BUT smaller pages result in less fragmentation and thus better performance

● Increasing page size results in better hard drive performance, as the majority

of hard drive access time is seek and latency time, not transfer time
○ BUT a smaller page size may result in less total IO, therefore giving better performance

● All in all, it depends on both spatial and temporal locality relationships of the

executing program

● General trend is toward larger page sizes

Thrashing

If a process does not have “enough” pages, the page-fault rate is very

high. This leads to:
○ low CPU utilization

○ operating system thinks that it needs to increase the degree of multiprogramming

○ another process added to the system

