CS3841 - Design of Operating Systems
Processes

* Objectives
— Explain the contents of the text section, data section, heap, and stack of a program
— Draw a graphical representation of a process in memory
— Explain the concept of process state
— Draw a state transition diagram for process states
— List the contents of a process control block
— Explain what the process scheduler is responsible for doing within the operating system.
— Be able to obtain information about the processes which are running under Linux.
— Explain the relationship between process ids, groups, and the general process hierarchy in Unix

Operating Systems

Dual Mode Operation

* Modern Operating Systems use at least two modes of
operation

— User mode

* A restricted mode of operation which only allows certain instructions to be
executed by the program

* Prevents errant processes from crashing the system
— Kernel Mode

* Also referred to as supervisor mode, system mode, or privileged mode
* Allows the system full access to the microprocessor

* Intended to be used only by the operating system

Linux Kernel

N) N) R \
)
processes * o ¢ o0 > 2
i
?
s
/wf/ \-_-/ J
\
signals < system calls
A
/ processes \x
& schedul
bt file network
systems protocols _
virtual 2
memory ! v E
char device block device network de-
drivers drivers vice drivers
i \ / / /
traps & physical .
faults memory L
A / \""‘-- J
e =_—mm—mEmEmEms== ey --h‘K ---------- o
¥ 4 v 4 z
system network inter-
CPU J terminal disk z
memory face controller £
=

Operating Systems: Internals and Design Principles, 9th Edition William Stallings
Operating Systems

ilrl MR

PF WA

B -

Main

memaory

Context

Data

Program .

Processor

registers

rocess index |

S ——

Base
Lt h

(code)

Figure 2.8 Typical Process Implementation

Program vs Process

* Program

— Static representation of operations
and data

— Compiled code

* Process

— Instance of active exeuction

Operating Systems

Why do we need processes?

Concurrent Processing

Real concurrency achieved by hardware
— |/O devices operate at same time as processor
— Multiple processors/cores each operate at the same time

Apparent concurrency achieved with multitasking (multiprogramming)
— Multiple programs appear to operate simultaneously

— Operating system provides the illusion

Isolation and Protection

— Can’t let one process affect another without permission

Program Structure

* A program has multiple pieces — Here are some examples
— Text
* The instructions to execute

— Data sections
 Static data (numbers, strings, etc.)
— Linking information

* What software libraries does this program use? (math library, crypto library, etc.)

— Symbol Table

* Information about the symbols (variable names) this program uses

Operating Systems

Process Structure

* A process has multiple pieces
— Text section

* The executable code that is running

— Data section

* The global variables of the program

* BSS (Block Started by Symbol) — Uninitialized global variables
— Heap

* Dynamically allocated memory when a process executes (i.e. new)
— Stack

 Temporary data for the process
— Function parameters, return addresses, local variables, etc.

Operating Systems

Program — ELF

Executable
and Linkable
Format

Program vs Process

ELF header

Program header table

text

.rodata

.data

Section header table

)

Operating Systems

Text

Data

BSS

Heap

Stack

Process

Stack

int foo2 (int k) {

int 1 = 5
return i + k: Parameter k
} foo2 i
int fool(int K) | Return address — foo1l
int i = 5; Parameter k
int § = k + i + foo2(k); fool i and |
return Jj; Return address - main
}
main TEiy
int main() { Return address - ??
int i = fool (20);

int 3 = 1 + 10;

return 7j;

Operating Systems

Processes

OS abstraction

Created by OS system call

Managed entirely by OS; unknown to hardware
Operates “concurrently” with other processes
Processes have “state”

Operating Systems

Process State

Two state model
— Running and Ready Start »| Ready Exit »
Is this all we need?

What about I/0O?
How do we decide state transitions?

Round robin scheduling:

— Each process in the queue is given a certain amount of time to execute and then
returned to the queue, unless it completes

— Period is known as a quantum

Efficiency - Can we do better?

Operating Systems

Process State — 5 State Model

New
— The process has just been created but has not yet executed

Ready

— The process is waiting to be assigned to a CPU

Waiting (Blocked)

— The process is waiting for some event to occur

Running

— The process is executing on the CPU
Terminated (Exit)

— The process has finished execution

Operating Systems

Process State — 5 State Model

admitted interrupt exit

terminated

I/O or event completion

* |Is this all we need?
* Efficiency - Can we do better?

Operating Systems

Process State — Linux Model

existing task calls
fork() and creates
a new process

TASK_ZOMBIE

(task is terminated)

scheduler dispatches task to run:
schedule() calls context_switch()

task forks /\ task exits via do_exit()

TASK_RUNNING
(ready but
not running)

~_

task is preempted
by higher priority task

TASK_RUNNING
(running)

) TASK_INTERRUPTIBLE)
event occurs and task is woken up or task sleeps on wait queue

and placed back on the run queue TASK_UNINTERRUPTIBLE for a specific event
(waiting)

Operating Systems

Process — More things to think about

How many processes do we want to allow?
What if we run out of memory?

What about process priority?

How do we handle run-away processes?
How do we schedule processes? Fairness?

Process Scheduler

* Objective of multiprogramming
— The CPU must always be doing something
* Process scheduler

— Enforces scheduling policy

— Selects an available process which is ready and determines that it will be the next
process to execute

— Send the process to the dispatcher

* Process dispatchers

— Responsible for causing the CPU to start executing the desired process

Process Control Block (PCB)

 What does the OS need to keep

track of?

— Process state

— Process identifier

— Owning user

— Contents of registers
— Program counter

— Memory references
— Others?

Operating Systems

process state

process number

program counter

registers

memory limits

list of open files

Process Table

* How do we track multiple processes?
* OS keeps a table of all PCBs for all processes

— Indexed by process identifier

Operating Systems

Process Hierarchy

Operating Systems

Creating a Process
e fork()

— System call that “splits” a processes into two

— New process begins executing at the return from fork

— Parent keeps executing after calling fork

— Programmer can tell the difference based on fork return value

e Return value in parent process — child process process identifier (pid)
e Return value in the child process—0
— Questions:

 How can the child figure out its pid?
 How can the child process figure out the parent’s pid?

* |s there a use to having multiple processes in a single program?

About fork

“man fork” for all the details
Parent and child processes

— Execute the same source code

— Do NOT share memory locations
— Do share file descriptors

Can we communicate easily between parent and child?
— File system: named files, FIFOs, pipes
— Shared memory

Is there a better way? Threads

