CS3841 Design of Operating Systems
OS Structure

* Objectives
— Construct source code which performs a system call.
— Explain the concept of a trap.
— List some examples of System calls.
— Draw a diagram showing the structure of a Modern *NIX System
— Explain the concept of a loadable module in Linux
— Draw a picture showing the relationship between Linux kernel

components. -

Operating Systems

Operating System vs Kernel

* QOperating System
— A piece of software that provides services to applications
 Kernel

— A piece of software that “bridges” hardware and software
— Figurative sense of "core or central part of anything” (https://www.etymonline.com/word/kernel)

* Questions
— |Is a kernel an operating system?
— |Is there more to an operating system than just the kernel?
— Can an operating system have more than one kernel?
— Does the kernel run on its own?
— How do we create a kernel?

Dual Mode Operation

* Modern Operating Systems use at least two modes of
operation

— User mode

* A restricted mode of operation which only allows certain instructions to be
executed by the program

* Prevents errant processes from crashing the system
— Kernel Mode

* Also referred to as supervisor mode, system mode, or privileged mode
* Allows the system full access to the microprocessor

* Intended to be used only by the operating system

Traditional *NIX — Monolithic Kernel

User Programs

e, [Libraries |

e, L T _ * Few components
| I User Level
! — User programs
System Call Interf:
- ystem La nier ace“ I _ Kernel
‘ B — — Hardware
-process
. communication
LUl L «—»| Process ¢ Ad Va nta ges
Control Scheduler . . : : H
: £ Subsystem — Single point of control — All services in single
o o] e address space
, ‘ * Disadvantages
character block]])
o — Kernel Level — Single point of failure

: — Updates require reload of system

| Hardware Control |

| Hardware Level | %
Operating Systems: Internals and Design Principles, 9th Edition L

William Stallings Operating Systems

Microkernel Structure

Applications Applications
User
Space .
P Libraries Libraries
L]
. User
File Systems Space oly
Elug| 5 | &
. Lg|os| B | ¢
Interprocess Communication AR 2 =
Kernel AMacwn| & |0
/0 and Device Managment

Fundamental Process Managment Kernel Microkernel

Hardware Hardware

Operating Systems 6

Microkernels

Remove all but “essential components” from the kernel
Bulk of responsibilities is in user space
Communication through message passing

Advantages

— Smaller kernel

— More robust - User space components can be updates/restarted easily
Disadvantages

— Message passing overhead
— Additional system calls needed

Linux Kernel

O O AT \
)
processes e o ¢ o 0 > 2
-
2
=
/u'/' R B
\
signals < system calls
A
processes \x
& schedul
e file network
/ systems protocols _
virtual 2
memory y v E
char device block device network de-
drivers drivers vice drivers
i \ / / /
traps & physical .
faults memory L
A / \""‘-- J
e __——_——————— e --BK ---------- o
L 4 \ A \ A ¥ £
system network inter-
CPU y terminal disk £
memory face controller £
=

Operating Systems: Internals and Design Principles, 9th Edition William Stallings
Operating Systems

Android

Applications

[Home] [Dialer] [SMSMMSI [M |

Browser]

Camera] [Alarm] [Calculator]

[ContactsJ [Voice Dia]] [Email J [Ca]endarJ [Media J [Albums J [Clock] [cee]

Player
Application Framework
[Activity Manager] [gi’:};‘;‘:] [Content Providers] [View System] [Nﬁiﬁ‘::::n]
Package Manager Telephony Resource Manager Location Manager XMPP Service
Manager
System Libraries Android Runtime
[Surface Manager] [Media Framework] [SQLite] [Core Libraries]
(OpenGL/ES] [FreeType] [LibWebCore] [Dalvik Virtual Machine]

[SGL] [SSL] [Libe]

Linux Kernel

[Display Driver J [Camera Driver] [Bluetooth Driver] [Flasgmi?mry] [Bi“gf,fv{gf ©)]

[USB Driver] [Keypad Driver] [WiFi Driver] [Audio Drivers] [Magg;:::‘m]

Implementation:

I:l Applications, Application Framework: Java

|:| |:| System Libraries, Android Runtime: C and C++

|:| Linux Kernel: C Operating Systems

Getting help in Linux

°* Man Section Description
_ Manual pages 1 General commands
2 System calls
* apropos
3 Library functions, covering in particular the C standard library
— Man Page search = Special files (usually devices, those found in /dev) and drivers
5 File formats and conventions
6 Games and screensavers
7 Miscellanea
8 System administration commands and daemons

Operating Systems

System Calls

* System Calls provide a set of “functions” for applications to use
operating system services

— OS specific
— Portable Operating System Interface (POSIX)
e Cor C++ library interface

* Typically involve some “trap” to the operating system

System Calls

* Trap, System Call, Supervisor Call: user mode -> kernel mode

— Transfers control from user program to kernel function

— Sets mode from user to kernel

user process

execute system call

Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. 2013. Operating System Concepts Essentials (2nd ed.). Wiley Publishing.

Operating Systems

user mog:ie
user process executing —» calls system call return from system call (mode bit = 1)
\ F
1 V4
3 v 4
K | trap return
s mode bit=0 mode bit = 1
kernel mode
(mode bit = 0)

Why do we need system calls?

Isolation and protection
Kernel is running in privileged mode
— User process is not

Can processes share anything?
— We will see this later as a method of inter-process communication

Can processes share information with the kernel?

In addition to sharing information, we also want kernel to take
actions, perhaps immediately

System Calls Example - File Input/Output

— What's a file? Abstract representation of data on “disk”
— How do we access a file? open, read/write, close

. open
/\ file descriptor]
read
. write
v . close

file descriptor

Operating Systems

System Call Table

e System calls are invoked by number

* Kernel finds code to process the system call by indexing in a table
* Linux system call table:

— 32 bit - https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32 bit

— 64 bit - https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86 64-64 bit

* Windows system call table:

— 32 bit - https://jooru.vexillium.org/syscalls/nt/32/

— 64 bit - https://jooru.vexillium.org/syscalls/nt/64/

Operating Systems

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86_64-64_bit
https://j00ru.vexillium.org/syscalls/nt/32/
https://j00ru.vexillium.org/syscalls/nt/64/

System Calls Example - Hello World

#include <unistd.h>»

int main(int argc, char *argv[])

write(l, "Hello World\n", 12); /* write "Hello World" to stdout */
_exit(8); S* exit with error code @ (no error) */
¥
SLTart

movl $4, %eax ; use the write syscall
movl $1, %*ebx ; Write to stdout

movl $msg, *ecx ; use string "Hello World”
movl $12, Fedx ; write 12 characters

int $8x38 ; make syscall

movl $1, %*eax ; use the exit syscall

movl $8, %*ebx ; error code 8
int $8x38 ; make syscall

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

Operating Systems

How do we invoke a system call?

#include <stdio.h>
int main ()

 Can asystem call be a {
function call? '

— printf("Hello MSCE"); |

e Software interrupt vs
SYSENTER vs SYSCALL

* Most system calls are
wrapped with user-callable user !

mode

t'axit(D) :

}

functions available via the — Standard ¢ Library gmm Trap to OS
standard library mode

— Linux - libc / glibc Qme() >

— Windows — NativeAPI (ntdll.dll) LSO

Operating Systems

Linux System Calls

32-bit userspace 64-bit userspace
EAX=3; EAX=3; RAX =0
T INT Ox80 SYSEMNTER [T SYSCALL
i ! |
Via trap gate for \Via trap gate for \Via MSR for Via MSR for ia MSR for
SYSCALL_WECTORAJAZZ SYSCALL WECTOR /MSR_IA3Z SYSEMTER_EIP MSR_IA32 SYSENTER_EIP MSR_LSTAR

iKernel: x86_32 Assembly / ’ \ Kernel: xéﬁ_ﬁil Assembly J

system call() ia32 sysenter target() ia32 syscall() ia32_sysenter target() systemn _call()
kernelfentry_32.5 kernelfertry_32.5 ia32fia3Zentry.S ia32fia3Zentry. S kernel/entry 54.5
e, ™ i £

sys cal_table
[0]

sys_call table sys call_table @32 sys call table @32 _sys call table
(3] [3] (3] (3]

sys_read()
fsfread_write.c

v

SYSC_read()

Operating Systems

System Calls - Questions

How do we pass data to a system call?
How many system calls do we need?
What should the system calls do?
What process executes a system call?

