CS3841 Design of Operating Systems
OS Structure

* Objectives
— Construct source code which performs a system call.
— Explain the concept of a trap.
— List some examples of System calls.
— Draw a diagram showing the structure of a Modern *NIX System
— Explain the concept of a loadable module in Linux
— Draw a picture showing the relationship between Linux kernel

components. -
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Operating System vs Kernel

* QOperating System
— A piece of software that provides services to applications
 Kernel

— A piece of software that “bridges” hardware and software
— Figurative sense of "core or central part of anything” (https://www.etymonline.com/word/kernel)

* Questions
— |Is a kernel an operating system?
— |Is there more to an operating system than just the kernel?
— Can an operating system have more than one kernel?
— Does the kernel run on its own?
— How do we create a kernel?




Dual Mode Operation

* Modern Operating Systems use at least two modes of
operation

— User mode

* A restricted mode of operation which only allows certain instructions to be
executed by the program

* Prevents errant processes from crashing the system
— Kernel Mode

* Also referred to as supervisor mode, system mode, or privileged mode
* Allows the system full access to the microprocessor

* Intended to be used only by the operating system
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Microkernel Structure
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Microkernels

Remove all but “essential components” from the kernel
Bulk of responsibilities is in user space
Communication through message passing

Advantages

— Smaller kernel

— More robust - User space components can be updates/restarted easily
Disadvantages

— Message passing overhead
— Additional system calls needed




Linux Kernel
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Android

Applications

[ Home ] [ Dialer ] [SMSMMSI [ M |

Browser ]

Camera ] [ Alarm ] [Calculator]

[ContactsJ [Voice Dia]] [ Email J [Ca]endarJ [ Media J [ Albums J [ Clock ] [ cee ]

Player
Application Framework
[ Activity Manager ] [ gi’:};‘;‘: ] [Content Providers] [ View System ] [ Nﬁiﬁ‘::::n ]
Package Manager Telephony Resource Manager Location Manager XMPP Service
Manager
System Libraries Android Runtime
[ Surface Manager ] [Media Framework] [ SQLite ] [ Core Libraries ]
( OpenGL/ES ] [ FreeType ] [ LibWebCore ] [ Dalvik Virtual Machine ]

[ SGL ] [ SSL ] [ Libe ]

Linux Kernel

[ Display Driver J [ Camera Driver ] [Bluetooth Driver] [ Flasgmi?mry ] [ Bi“gf,fv{gf ©) ]

[ USB Driver ] [Keypad Driver] [ WiFi Driver ] [ Audio Drivers ] [ Magg;:::‘m ]

Implementation:

I:l Applications, Application Framework: Java

|:| |:| System Libraries, Android Runtime: C and C++

|:| Linux Kernel: C Operating Systems



Getting help in Linux

°* Man Section Description
_ Manual pages 1 General commands
2 System calls
* apropos
3 Library functions, covering in particular the C standard library
— Man Page search = Special files (usually devices, those found in /dev) and drivers
5 File formats and conventions
6 Games and screensavers
7 Miscellanea
8 System administration commands and daemons
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System Calls

* System Calls provide a set of “functions” for applications to use
operating system services

— OS specific
— Portable Operating System Interface (POSIX)
e Cor C++ library interface

* Typically involve some “trap” to the operating system




System Calls

* Trap, System Call, Supervisor Call: user mode -> kernel mode

— Transfers control from user program to kernel function

— Sets mode from user to kernel

user process

execute system call

Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. 2013. Operating System Concepts Essentials (2nd ed.). Wiley Publishing.
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Why do we need system calls?

Isolation and protection
Kernel is running in privileged mode
— User process is not

Can processes share anything?
— We will see this later as a method of inter-process communication

Can processes share information with the kernel?

In addition to sharing information, we also want kernel to take
actions, perhaps immediately




System Calls Example - File Input/Output

— What's a file? Abstract representation of data on “disk”
— How do we access a file? open, read/write, close

. open
/\ file descriptor ]
read
. write
v . close

file descriptor
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System Call Table

e System calls are invoked by number

* Kernel finds code to process the system call by indexing in a table
* Linux system call table:

— 32 bit - https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32 bit

— 64 bit - https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86 64-64 bit

* Windows system call table:

— 32 bit - https://jooru.vexillium.org/syscalls/nt/32/

— 64 bit - https://jooru.vexillium.org/syscalls/nt/64/
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System Calls Example - Hello World

#include <unistd.h>»

int main(int argc, char *argv[])

write(l, "Hello World\n", 12); /* write "Hello World" to stdout */
_exit(8); S* exit with error code @ (no error) */
¥
SLTart

movl $4, %eax ; use the write syscall
movl $1, %*ebx ; Write to stdout

movl $msg, *ecx ; use string "Hello World”
movl $12, Fedx ; write 12 characters

int $8x38 ; make syscall

movl $1, %*eax ; use the exit syscall

movl $8, %*ebx ; error code 8
int $8x38 ; make syscall

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux
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How do we invoke a system call?

#include <stdio.h>
int main ()

 Can asystem call be a {
function call? '

— printf("Hello MSCE"); |

e Software interrupt vs
SYSENTER vs SYSCALL

* Most system calls are
wrapped with user-callable user !

mode

t'axit(D) :

}

functions available via the — Standard ¢ Library gmm Trap to OS
standard library mode

— Linux - libc / glibc Qme() >

— Windows — NativeAPI (ntdll.dll) LSO
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Linux System Calls

32-bit userspace 64-bit userspace
EAX=3; EAX=3; RAX =0
T INT Ox80 SYSEMNTER [T SYSCALL
i ! |
Via trap gate for \Via trap gate for \Via MSR for Via MSR for ia MSR for
SYSCALL_WECTORAJAZZ SYSCALL WECTOR /MSR_IA3Z SYSEMTER_EIP MSR_IA32 SYSENTER_EIP MSR_LSTAR

iKernel: x86_32 Assembly / ’ \ Kernel: xéﬁ_ﬁil Assembly J

system call() ia32 sysenter target() ia32 syscall() ia32_sysenter target() systemn _call()
kernelfentry_32.5 kernelfertry_32.5 ia32fia3Zentry.S ia32fia3Zentry. S kernel/entry 54.5
e, ™ i £

sys cal_table
[0]

sys_call table sys call_table @32 sys call table @32 _sys call table
(3] [3] (3] (3]

sys_read()
fsfread_write.c

v

SYSC_read()
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System Calls - Questions

How do we pass data to a system call?
How many system calls do we need?
What should the system calls do?
What process executes a system call?




