Memory Management

e Relocation

e Protection Process Address Space
0
e Sharing Text
e Logical Organization Saa
e Physical Organization BSS
o Malin Heap
o Secondary l
Stack
o]

Memory

Logically - An array of bytes accessed by address

w N - O

5
12
load 3 .
) 12
CPU Memory

store5at 1

v

Program vs Process

Process Address Space
0

/\ Text
\/ . Data
Operating Syste‘m BSS

»

Program Helap

\/ StaTck

Memory Allocation

e \When processes start memory needs to be allocated
o Process Control Block
o Text
o Data

e Processes want to dynamically allocate and free memory
o Stack
o Heap

e Memory is finite - not all processes will fit in memory at the same time

Memory Allocation - Fixed Partitions

: Operating system Operating system

e Every process gets the same size . -
memory partition - "
6M

e Problems:
o Internal fragmentation -

o Some processes need more memory than "
others - -
&M 1M
16M

M

(a) Equal-size partitions (b) Unequal-size pantitions

Memory Allocation - Dynamic Partitions
Operating L am {)p)mu'ing ()p:raling Operating
. . system || system | system system
e Processes get memory partition that is
. Process 1 | | 20M Process | | L 20M Process | | L 200
the exact size for what they need
L semM Process 2 |+ 14M Process2 | b 14M
e Where do we put the process allocation? o N)
o First Fit | ! o
o Next Fit ®
o BestFit = =y ¥ =y
o Worst Fit ’ Process 2 luu
Process | |} 20M Process 1 | & 20M 20M
oM
o PrObIemS l. s Process 4 f'- M Process 4 } AM Process 4 i{ M
o External fragmentation o o ™
o May not know how much a memory a process RSN [15M [EEES r1aM (IRESS] 1o (RN [18M
will need when it starts bam bam e b4

(el in (g {h)

Program vs Process

Y
S

Program 1

Program 2

N

Operating System

Process 1
Address Space

Text

Data

BSS

Heap

Stack

Process 2
Address Space

Text

Data

BSS

Heap

Stack

Problem:
e Memory is finite
e Both processes want to see
an unlimited address space
e Processes don’'t want to know
about the existence of other
processes

Solution:
Paging

Paging - A Perfect World

Remember Memory Result Access
0 0
| &
2
3 3

Paging - The World is Not Perfect

Remember Memory Result Access
0 0
1 1
2 2
3 3
?

Paging

Remember

Memory

Result

L/

Paging

Paging

NOTE

Access

Paging - Swapping

NOTE

Paging - Swapping

NOTE

Paging - Swapping

NOTE

Paging - Swapping

NOTE

Process Managed Paging - Problem

e The process expects data to always be in the same place

Consider: Expected Result:
void foo () { Ox7ffedfcbeodl
int 1 = 0; Ox7ffedfcbeodl
int green = 0; Ox7ffedfcbeodl
for(i = 0; 1 < 10; i++) { Ox7ffedfcbeodl
printf (“%p\n”), &green); Ox7ffedfcbeodl
} Ox7ffedfcbeodl
} Ox7ffedfcbeodl
Ox7ffedfcbeodl
Ox7ffedfcbeodl
Ox7ffedfcbeodl

e What happens when there are multiple processes?

e Memory management should not have to be done by the process

Operating System Managed Paging

Requirement - Allow programs to access the same location (virtual address - VA)
for data even when the data is moved around in memory (physical address - PA)

Divide program memory into a series of equal sized pieces - pages

Divide physical memory into pieces (same size as pages) - frames

Copy pages from disk to memory as they are needed

Copy pages from memory to disk when there are no free frames

Record which frame the page is located or that it isn’t in memory

When a program accesses data at a virtual address, translate the access to
the correct physical address.

Address Translation

Physical Memory Virtual Memory
l offset
0 /'O [
/ Page
i Number
Frame : ¥
Number 1
l offset
Kk
Fact:
+ Page Size == Frame Size
* Page Offset == Frame Offset
-1 Computation:
+ Offset = Virtual Address % Page Size
* Physical Address = k * Page Size + Offset

Address Translation - Page Table

e The ‘notebook’ for storing where

6 0 (which frame) pages are located
1 e Indexed by page number
5 e Stores frame number
9 3 Fact:
» Page Size == Frame Size
4 » Page Offset == Frame Offset
S Computation:
« Page Number = Virtual Address / Page Size
« Offset = Virtual Address % Page Size
m-1 « Frame Number = Page Table[Page Number]

Physical Address =
Frame Number * Page Size + Offset

Address Translation

e Mathis hard - Hardware is easy
e Ensure page size is a power of 2 - address translation becomes routing bits

_ 31 12 11 0
Page Size = 4096 = 212
Address Size = 32 bits Vv Page Number offset
Max Addresses = 232 A
Page Table
31 il 12 11 | 0
P Frame Number offset
A

Paging - Address Translation Hardware

e Memory Management Unit (MMU)
Translates virtual addresses to physical address

e Problem:

o MMU needs page table to translate VA to PA
o Page table is located in memory
o MMU requires additional memory access to get page table entry

e Solution: Translation Lookaside Buffer (TLB)
Cache within the MMU that stores page table entries

What's in a Page Table Entry?

31 12 11 0

Address Structure: Page/Frame Number offset

e Page table entry size = Address size
e Present/Valid - Is the page in memory? Yes/No (1 bit)

e Protection
o Are the contents of the page readable? Yes/No (1 bit)
o Are the contents of the page writable? Yes/No (1 bit)

Accessed - Was the page access recently? Yes/No (1 bit)
Dirty - Has the page been modified since it's been in memory? Yes/No (1 bit)

Page Fault / Page Replacement

e Triggered by MMU when requested page is not in a frame
e MMU sends page fault interrupt

e Operating system services interrupt
o Determines frame for page
m Free frame if available
m Chose a victim page to send to disk
o Populates the frame with new page
o Updates the page table

o What happens if present bit in page table is not set AND page does not exist?

Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame; update the page and frame tables
4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault

Page Replacement

frame valid—invalid bit

A
change
0 |i to invalid
T1®
reset page
page table table for
new page

—

swap out
victim

%/D

e,
victim

swap
desired
page in

physical
memory

T

Virtual Memory Advantages

e [solation -
Allows multiple processes memory without interfering with each other

e Abstraction -
Allows a process to use all the memory they ‘want’

e Efficiency -
Locality - A process typically only uses a subset of pages (working set)

O
Sharing - Read only page (e.g. code) can be shared between multiple processes

(@)

Copy on Write and Page Pools

e Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory
o If either process modifies a shared page, only then is the page copied
e COW allows more efficient process creation as only modified pages are
copied
e In general, free pages are allocated from a pool of zero-fill-on-demand pages
o Why zero-out a page before allocating it?

Virtual Memory Dilemmas

What happens when a process is context switched?
How is a victim page chosen?
What happens when a process working set is large? Thrashing

What happens when the page table gets big
o 32 bit address space and 4096 byte pages/frames => 220 (1048576) page table entries
4 bytes per entry => 4 MiB for page table
o 64 bit address space and 4096 byte pages/frames => 252 page table entries
4 bytes per entry => 16 TiB for page table

Context Switching

OS needs to context switch process P1 for process P2

TLB contains page table entry cache for P1
Process P2 has its own page table

OS needs to clear the TLB and ensure that P2’s page

table is used for all future accesses

Result: Context switching is costly

CPU

Virtual Address

»
P

Physical Address

Page Table P1

Page Table P2

Data

Memory

Frame Allocation and Page Replacement
e Frame Allocation - How many frames to give each process?

e Page Replacement algorithm
o Firstin/ First Out (FIFO)
o Least Recently Used
o Optimal

e Want lowest page-fault rate on both first access and re-access

First in / First Out

e The first page brought into memory is the first victim page

e Fastto choose a victim
o Treat frames like a linked list and keep track of the head pointer

e Example: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
3 frames (3 pages can be in memory at a time per process)

2 0 3 0 4 2 3 0 3 2

e 15 page faults

Least Recently Used

e The victim page is the ‘oldest’ page
|Idea take advantage of temporal and spatial locality

o Temporal — If a process accesses a page, it's going to access it again soon
o Spatial - If a process accesses a page, it's going to access a location close to it soon

e Requires lots of bookkeeping to keep track of access time

cExampIe
2 0 3 0 4 2 3 0 3 2 2 01 7 0 A

e 12 page faults

Optimal — Least Needed in the Future
e The victim page is the page that will not be used for longest period

e |dea take advantage of temporal and spatial locality
o Temporal — If a process accesses a page, it's going to access it again soon
o Spatial - If a process accesses a page, it's going to access a location close to it soon

e Not possible — Can’t predict the future

2 0 3 0 4 2 3 0 3 2 1 7 0 1

0
f

e 9 page faults

e Example:

Virtual Memory Tradeoffs

e Increasing page size decreases size of the page table, increasing

performance
o BUT smaller pages result in less fragmentation and thus better performance

e Increasing page size results in better hard drive performance, as the majority

of hard drive access time is seek and latency time, not transfer time
o BUT a smaller page size may result in less total 10, therefore giving better performance

e Allin all, it depends on both spatial and temporal locality relationships of the
executing program
e General trend is toward larger page sizes

Thrashing

If a process does not have “enough” pages, the page-fault rate is very
high. This leads to:

o low CPU utilization
o operating system thinks that it needs to increase the degree of multiprogramming

o another process added to the system

A

| thrashing

CPU utilization

v

degree of multiprogramming

