CS3841 - Design of Operating Systems
Threads

Problem ,
_ Parent Child
* Parent and child process do not 0 0
share address spaces Text Text
Questi Data Data
uestion BSS BSS
« How can parent and child fork()

_ Heap — Heap
communicate? Inter process i l
Communication

* |Isthere an easier way? T T
Stack Stack
o0 c0

Operating Systems



Inter Process Sharing

* Sharing variables is easier than sharing via handles or
descriptors

— Unstructured D e
— Load/store Data
* How much do we want processes to share? HB:;
— Text? l
— Heap? T
B Data? - Stack

— Stack?

Operating Systems,



Threads

* “Processes” that share by default U2
— Text Data
— Data
— Heap Heap

e Each have their own stack

_ Why?-
Function calls
Local variables Thread 1 Thread 2 Thread 3

Operating Systems 3



Processes vs Threads
* A process represents:

— Address space that holds process image
— Access to resources (1/0, file systems, etc.)

* A process possesses one or more threads, each with:
— Thread execution state, saved context if not running
— Execution stack
— Per-thread static storage
— Access to shared, process-owned memory and resources
— Implicit IPC through shared text, data, and heap
— Bad news — Data races




How to Implement Threads — Kernel Level

* Processes are an OS concept

* Does it make sense to implement

threads in OS?
— OS is already managing memory

— OS is already managing scheduling

— Blocking only stops active thread

Operating Systems

User

Space

D @

Eemel

SpaIce




How to Implement Threads — User Level

* Does it make sense to implement

threads in user space? IH .3 f
— User program may have more i |
knowledge of how threads are used ‘ Threads \\x’ User
: library SPace
(scheduling) ,
. Eoermel
— Runs without OS awareness space
— Single process space to manage

— Blocking stops all threads

"
S

Operating Systems



pthreads — POSIX Threads

Initially user level, but now are kernel level

System calls like those for processes
— pthread_create -> fork()
— pthread_join -> wait()
— pthread_exit -> exit()

pthreads share process identifier, but have own thread identifier

pthreads share everything parent and child processes share + text, data,
and heap




Linux (not POSIX) Fine Grained Sharing

* What if we want to mix and match what is shared?
 Don’t want to share file descriptors, but want to share heap

* Linux system call -> clone() User
Space

Kernel
Space

pthread create

Operating Systems



